Three-Wire Screw Measurement
This tool can be used to calculate the correct measurement for a given thread using the three-wire method. It is based in concept on Screwmez by Pete Worden (described in Model Engineer's Workshop issue 246), but has been written from scratch to be a web-based application usable on any operating system. I don't have a Windows PC upon which to run Screwmez, so if you notice any discrepancies, please use the contact page to let me know!
All the fields that expect a number (diameter, pitch etc), will accept fractions (e.g. 1 1/4) and numbers followed by an explicit unit (" or mm), so if you chose to do so you could specify an imperial thread with a diameter of 25 1/2 mm and a pitch of 0.1" (rather than specifying a TPI). More usefully, if you have measuring wires that are specified in imperial units, you can select a metric thread but still enter (e.g.) 0.040" as the actual wire size.
Note that the minimum and maximum wire size fields may be wrong as I haven't yet managed to find consistent equations for all thread angles (in particular 47.5°). If anyone can help with this, then please do get in touch.
Thread Class: | ||
Selected Thread: | ||
Thread Nominal Diameter (mm) : |
mm
|
|
Thread Pitch (mm) : |
mm
|
|
Thread Angle (degrees) | ||
Thread Pitch Diameter (mm) : |
mm
|
|
Depth of Thread (mm) : |
mm
|
|
Helix Angle (degrees) | ||
Preferred Wire Size (mm) : |
mm
|
??? mm
|
Maximum Wire Size (mm) : |
mm
|
??? mm
|
Minimum Wire Size (mm) : |
mm
|
|
Actual Wire Size (mm) : |
mm
|
|
Dimension Over Wires (mm) : |
mm
|
Background
This calculator uses the following equations - let me know if you think they're wrong! Regardless of thread type, all entered data is converted into millimetres prior to calculating the results; if the thread type is an imperial one, the result is then converted back into inches for display (although both inches and millimetres are displayed in the right-hand column regardless of the thread unit).
Key
\(\qquad D\) is the Thread Diameter (e.g. 6 mm for M6).
\(\qquad C_p\) is the Pitch Circumference (defined below).
\(\qquad D_p\) is the Pitch Diameter (defined below).
\(\qquad P\) is the Thread Pitch (for imperial threads, \(P = 1/TPI\)).
\(\qquad \theta\) is the Thread Angle.
\(\qquad \alpha\) is the Helix Angle.
\(\qquad \delta\) is the depth of thread.
\(\qquad M\) is the dimension over the wires.
\(\qquad W_p\) is the preferred wire size.
\(\qquad W_a\) is the actual wire size.
\(\qquad W_{max}\) is the maximum wire size.
\(\qquad W_{min}\) is the minimum wire size.
\(\qquad k_1\), \(k_2\) and \(k_3\) are constants, defined below.
Thread Depth
$$ \delta = k_1 \cdot P $$
where \(k_1\) depends on thread type as follows:
Metric:
$$ k_1 = \frac{5}{8} \cdot \cos(30) $$
UNC:
$$ k_1 = 0.625 \cdot \cos(30) $$
Whitworth/BSF:
$$ k_1 = 0.640327 $$
BA:
$$ k_1 = 0.6 $$
Helix Angle
$$ \alpha = \arctan \left( \frac{P}{C_p} \right) $$
where,
$$ C_p = D_p \cdot \pi $$ $$ D_p = D - \left( 0.75 \cdot P \cdot \cos \left( \frac{\theta}{2} \right) \right) $$
Preferred Wire Size
$$ W_p = \frac{0.5 \cdot P}{\cos\left(\frac{\theta}{2}\right)} $$
Minimum / Maximum Wire Size
$$ W_{max} = \frac{0.873 \cdot P}{\cos\left(\frac{\theta}{2}\right)} $$ $$ W_{min} = \frac{0.485 \cdot P}{\cos\left(\frac{\theta}{2}\right)} $$
Dimension Over Wires
$$ M = D_p + \left( k_2 \cdot W_a \right) - \left( k_3 \cdot P \right) $$where \(k_2\) and \(k_3\) depend on the thread angle (\(\theta\)):
60° thread angles:
$$ k_2 = 3.0, k_3 = \cos(30) $$
55° thread angles:
$$ k_2 = 3.1657, k_3 = 0.9605 $$
47.5° thread angles:
$$ k_2 = 3.4829, k_3 = 1.1363 $$
This website is free, but costs me money to run. If you'd like to support this site, please consider making a small donation or sending me a message to let me know what you liked or found useful.